USE OF MONTE CARLO METHOD FOR SOLUTION OF
TIME-DEPENDENT PROBLEMS IN THE
HYDRODYNAMICS OF VISCOPLASTIC MEDIA

A, M. Makarov, K. B. Pavlov, UDC 532.501.32:532.135
and S. L. Simkhovich

A scheme is proposed for numerical solution of time-dependent problems of plane flow
of viscoplastic media by the Monte Carlo method. Solutions are given for the problems
of development and damping of gradient flow and damping of Couette flow.

A viscoplastic medium is a rheologic solid for which the dependence of shear stress on rate of de-
formation for plane motions has the form
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where 7y and u are respectively the limiting shear stress and the coefficient of dynamic viscosity (rheologic

constants) of the medium; the coordinate axis is perpendicular to the flow velocity in the medium. When

| 7] > 79, a viscoplastic medium "flows" (the tensor for the rate of deformation is different from zero);

when | 7| < 74, 2 viscoplastic medium is an absolutely rigid body.

A property of time~independent and time-dependent flows in a viscoplastic medium in plane channels
[1, 2] is the possibility of formation of a zone of quasirigid motion in which | 7| < 7, The solution of time-
independent problems of plane flows of viscoplastic media in a channel with parallel walls presents no dif-
ficulties. For a limited class of time-dependent problems which have self-similarity, a solution can be
obtained in analytic form [3]. Investigation of the problem for the general case is accompanied by con-
siderable mathematical difficulty [4]. The use of numerical methods is probably more effective in ob-
taining specific results.

We consider time-dependent flow of a viscoplastic medium in a plane channel (0 <y =< 2L) under the
action of a pressure gradient P(t). The equation of motion takes the form
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where p is the density of the medium; 7 for the zone of viscous flow is defined by Eq. (1); in the zone of
quasirigid motion, the velocity of the medium is independent of the coordinate:

u = uy (). {3)

Differentiating Eq. (2) with respect to y and making use of (1), we obfain after transformation to the di~
mensionless variables ¢ = ut/ pLlfandn = y/ L an equation for the shear stress 7, which is relative to some
characteristic shear stress 7, for the problem,
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Making use of the symmetry of the problem, we consider flow in the lower half of the channel (0 <7 =< 1).
At the fixed wall n =0, we have U = 9U/8t = 0, and consequently from Eq. 2)
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At the boundary of the quasirigid core 14(£), we have from the definition of a viscoplastic medium
T,
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From Egs. (2) and (3), it follows that 87/8y is constant over the cross section of the quasirigid zone at
each point in time. Using Eq. (6), we have

5
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Considering the continuity of medium velocity and shear stress in the transition across the zone boundary,
we arrive at a condition for 7(¢, ) at the boundary of the viscous zone:
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Note that in problems with no initial zone of viscous flow, i.e., for ny(0) =0, the effect of initial
conditions on the solution for the set of various (£, n) is insignificant except for the point (0, 0) [5].

We consider certain types of time-dependent motions in a viscoplastic medium.

1. Ina viscoplastic medium in a channel with fixed parallel walls, which is at rest for £ < 0, leta
time~dependent flow arise through the action of an instantaneously applied pressure gradient that
is constant in time. In this case

7(0)=0, @=—1). (3)

For large £, the solution ny(§) must tend to the value
Mg (0) = 1—s5, (9)

which corresponds to time-independent flow.

2. For £ < 0, let a time-independent flow of a viscoplastic medium in a channel with fixed parallel
walls be maintained by a pressure gradient | P| = 7eh/ L which is constant in time. At the time £
= 0 and subsequently, we make P = 0. In this case

O =1—s 0, N)=1—n (w = 0). (10)
The motion just described we call damping of gradient flow,

3. For £ < 0, let a time-independent flow in a viscoplastic medium in a channel with fixed parallel
walls be created by a constant force applied to an infinitely thin, weightless, rigid layer located
in the center of the channel and parallel to its walls which moves in its own plane at a constant
velocity. At the time £ =0, the central layer is left to its own resources. In this case, the initial
conditions are

B0 =1 0 nN=1 @=0). (11)
We call Case 3 the damping of symmetric Couette flow.

The problems described belong to the class of mixed nonlinear problems with unknown boundary
for the equation of thermal conductivity. Case 1 was investigated in [6]; however, the solution obtained
was incorrect because they used in place of (7) in the system of boundary conditions the condition

@& 1)=0,

which is only valid for the zone of quasirigid motion. It cannot be used as a boundary condition for the
viscous zone because the line (£, 1) lies entirely within the region for which Eq. (4) is not satisfied.

A similar problem for medium velocity u(é, n) was reduced in sufficiently general formulation to
a nonlinear system of integral Volterra equations of the first kind with an asymptotic solution of the prob-
lem being obtained for small time values in Case 1 [2].
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Fig. 1. Block diagram of program for realiza-
tion of the Monte Carlo method as applied to prob-

lem 1. N; = 2000.

In this paper, the Monte Carlo method is used
to obtain solutions suitable for any £ > 0. Application
of the method of statistical trials (Monte Carlo) to
the solution of boundary value and mixed problems in
mathematical physics has been described [7, 8].
Haji-Sheikh and Sparrow [9] successfully applied
this method to the solution of a problem with unknown
boundary for the equation of thermal conductivity
— the Stefan freezing problem. In contrast to the
problem discussed in [9], the boundary conditions in
the problems being discussed (Cases 1-3) do not con-
tain time derivatives of functions describing the posi-
tion of the zone boundary, which eliminates the pos-
sibility of using the method of solution developed in

[91.

Before realization of the Monte Carlo method,
the mixed (or boundary value) problem must be con-
verted to finite-difference form and the coefficients
of the finite~difference equations must be interpreted
as probabilities for transition of the moving point
from one point of the difference mesh to another.

We present expressions for the transition probabilities
in an implicit difference scheme for the equation of
thermal conductivity defined over a four-point pat-
tern (£j 45 s G Mk 1) G5 M)s G Dk—y) inA
nonuniform grid of ¢ and n:

PG, ki, k—1) = [ (Mapr — M) (Mg — Me—y)

]
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(nk+1“nh)2
. ﬂm_;m_lr
e — Mp—1
PG, koriy k4 1) = [ﬂkﬁﬂ
gi - gi—q
< _’1_@;‘1&:1_}“" (12)
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where, for example, P(i, k — i — 1, k) is the probability for the transition of the moving point from §, 7;)

to (éi—i; le)-

In finite-difference form, Egs. (5)-(7) become

T[E; 0] = T{&; Nl —wE)np (13)
T[& MWEN] == (14)

T [gi; Mg (Ez)] =7 [Ei; no(gi—l)]"

s [710 (B} — (Ei-—1)] ,

and Eqs. (10)and (11), necessary for solution of the problem in the second and third cases, are respec-

tively written as

T—, (&) (15)
{0, m) = 1— 1 (16)
T(0, M) = 1. (17)
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The probabilistic significance of Egs. (13), (14), (16), and (17) is given in [9]. According to the Monte
Carlo method, the value of the unknown function 7(¢;; 1y is equal to the mathematical expectation value of
the free terms in Egs. (13) and (14), and (18) or (17) respectively in the cases of the second and third equa-
tions, which are selected from a general sample for the incidence of moving particles on the boundary or
beginning of the region. The central limit theorem of probability theory [8] guarantees, under sufficiently
broad assumptions, the probability convergence of the arithmetic mean of the values mentioned to the
mathematical expectation value in a finite number of trials.

The algorithm for solving the problem consists of the following. We assume that certain values
7(¢i) are known. One can then use as a trial value of n4(¢j +4)

ME)—M &)y _ . 18
Ei . EZ—_l wi4l gl) ( )

and build up the grid to the time £; .,. Determining the corresponding transition probabilities (12) and
developing the random movement of a finite number of particles, we calculate v{&; 5 5 ny(é5)]. Substituting
the result in (15), written for the time £; .4, and using (14), we obtain a refined value for the quantity
ng(Ej +4). If the difference between the assigned and calculated values of ny(f; +4) is small, we go to the
next step; if it is not, the calculated value is used in a repetition of the calculation.

My (Ei1) = Mo (83) +

Equation (18) does not permit definition of the value of the first step. For Case 1, this can be done
with the help of an asymptotic solution [2]; for the second and third cases, it is convenient to take n4(&,)

=1(0).

A block diagram for realization of the Monte Carlo method as applied to the first problem is shown
in Fig. 1. The relationships 7y(£) for the first, second, and third problems are shown respectively in Fig.
2a, 2b, and 2¢ for several values of the plasticity parameter. A feature of the solutions for the second and
third problems is the finite flow time. Where damping of the flow of a Newtonian fluid under similar con-
ditions is of an asymptotic nature, flow of a viscoplastic material ceases at the moment the boundary of
the quasirigid core reaches the channel wall. It is easy to see in Fig. 2a that in the first problem, the
position of the zone boundary 7,(£) tends to the time-independent value in accordance with (9) for suffi-
ciently large £. Escape into the time-independent mode is more acceptabie for small values of s and de-
teriorates as the plasticity parameter increases while maintaining a qualitatively correct nature. This
phenomenon is intrinsically characteristic of the method of solution because it can be shown that the rela-
tive error in determination of Np{€; +1) increases as s increases.

In the application of the Monte Carlo method to the solution of boundary-value and mixed problems
in mathematical physics, one must keep in mind the approximation errors associated with the introduction
of a finite-difference scheme and the errors associated with a finite sample. Errors of the first kind can
be reduced by using an absolutely stable difference scheme and varying the grid parameters; errors of the
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second kind are reduced by increasing the number of trials. Both require an increase in machine time for
problem solution. In this connection, it is appropriate to point out that the quality of the method is deter-
mined not only by the number of arithmetical operations required for its realization but also by the time
an investigator spends in preparing for solution of the problem on a computer [10].

NOTATION

is the shear stress;

is the dynamic viscosity;

is the limit shear stress;

is the velocity of fluid;

is the time;

is the transverse coordinate;

is the dimensionless transverse coordinate;
is the dimensionless time;

is the unknown interface;

is the pressure gradient;

is the plasticity parameter;

PG, k—i-1,Kk) is the possibility of transfer of flowing point from (£;, 1) to (§1_4; n-
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