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A scheme is proposed for numerical  solution of t ime-dependent problems of plane flow 
of viscoplast ic  media by the Monte Carlo method. Solutions a re  given for  the problems 
of development and damping of gradient  flow and damping of Couette flow. 

A viscoplast ic  medium is a rheologic solid for which the dependence of shear  s t r e ss  on ra te  of de-  
format ion for plane motions has the fo rm 

Ou c)u 
= ~  + % s i g n ~ - y  ; t~[~%, (1) 

where T o and p a re  respect ive ly  the limiting shear  s t r e s s  and the coefficient of dynamic v iscos i ty  (rheologic 
constants) of the medium; the coordinate axis is perpendicular  to the flow velocity in the medium. When 
I ~r] > ~'0, a viscoplast ic  medium "flows" (the tensor  for the rate of deformation is different f rom zero); 
when [ ~r] < ~'0, a viscoplast ic  medium is an absolutely rigid body. 

A proper ty  of t ime-independentand t ime-dependent  flows in a viscoplast ic  medium in plane channels 
[1, 2] is the possibil i ty of format ion of a zone of quasirigid motion in which I ~'l < ~'0. The solution of t ime-  
independent problems of plane flows of viscoplast ic  media in a channel with parallel  wails presents  no dif- 
ficulties.  For  a limited c lass  of t ime-dependent  problems which have se l f - s imi la r i ty ,  a solution can be 
obtained in analytic form [3]. Investigation of the problem for the general  case is accompanied by con- 
s iderable mathematical  difficulty [4]. The use of numerica l  methods is probably more  effective in ob- 
taining specific resul ts .  

We consider  t ime-dependent  flow of a v iscoplas t ic  medium in a plane channel (0 ~ y _< 2L) under the 
action of a p ressu re  gradient  P(t). The equation of motion takes the form 

Ou P (t) + O'~ (2) 
P Ot o-if' 

where p is the density of the medium; T for the zone of viscous flow is defined by Eq. (1); in the zone of 
quasir igid motion, the veloci ty of the medium is independent of the coordinate: 

u = u o (t). (3) 

Differentiating Eq. (2) with respec t  to y and making use of (1), we obtain af ter  t ransformat ion  to the di-  
mensionless  var iables  ~ = p t / p L  2 and ~ = y / L  an equation for  the shear  s t r e s s  ~-, which is re la t ive to some 
charac te r i s t i c  shear  s t r e ss  ~-ch for the problem, 

a~ a2~ 

a ~ -  &l ~ (4) 

Making use of the s y m m e t r y  of the problem, we consider  flow in the lower half of the channel (0 _< ~ _< 1). 
At the fixed wall 7? = 0, we have U = 0U/0t = 0, and consequently f rom Eq. (2) 
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a:_. (~, o ) = w ( ~ ) ;  w ( ~ ) =  
P___~L 

0~1 Tch 
(5) 

At the boundary of the quasir igid core  ~0(~), we have f rom the definition of a viscoplast ic  medium 

T 0 
r~/~, ~0 (~)] = ~; s = - -  

"~ch 
(6) 

F r o m  Eqs. (2) and (3), it follows that av/0y is constant over the c ross  sect ion of the quasir igid zone at 
each point in time. Using Eq. (6), we have 

0T s 

-~-~(~' ~ ) =  1 - ~ 0 ( U  ( l > n > ~ 0 ( ~ ) ) .  

Considering the continuity of medium velocity and shear  s t r e s s  in the t ransi t ion ac ros s  the zone boundary, 
we a r r ive  at a condition for  z(~, 7) at the boundary of the viscous zone: 

OT s 

0,1 [~' ,lo(~)] = 1 - , 1 o ( ~ )  (7) 

Note that in problems with no initial zone of viscous flow, i.e., for 7?o(0) = 0, the effect of initial 
conditions on the solution for the set of var ious (}, ~?) is insignificant except for the point (0, 0) [5]. 

We consider  cer ta in  types of t ime-dependent  motions in a viseoplast ic  medium. 

1. In a viscoplast ic  medium in a channel with fixed parallel  walls, which is at r e s t  for ~ < 0, let a 
t ime-dependent  flow a r i se  through the action of an instantaneously applied p ressure  gradient that  
is constant  in time. In this case 

n o ( o ) = o ,  ( w = - - l ) .  ( 8 )  

2. 

3. 

For  large ~, the solution ~0(~) must  tend to the value 

tlo (~o)= l - - s ,  (9) 

which cor responds  to t ime-independent flow. 

For  ~ < 0, let a t ime-independent flow of a viscoplast ic  medium in a channel with fixed parallel  
wails be maintained by a p r e s su re  gradient [ P[ = ~ c h / L  which is constant in time. At the t ime 
= 0 and subsequently, we make P = 0. In this case 

~lo(O)= l - - s ;  x(O, ~1)= 1--~ .  (w=O~. (10) 

The motion just descr ibed we call damping of gradient  flow. 

For  ~ < 0, let a t ime-independent flow in a viscoplast ic  medium in a channel with fixed parallel  
wails be created by a constant force  applied to an infinitely thin, weightless,  rigid layer  located 
in the center  of the channel and paral lel  to its walls which moves in its own plane at a constant 
velocity. At the t ime ~ = 0, the central  layer  is left to its own re sources .  In this case,  the initial 
conditions a re  

~lo(O)=l, "~(0, ~1)=1, (w=O). (11) 

We call Case 3 the damping of symmet r i c  Couette flow. 

The problems descr ibed belong to the c lass  of mixed nonlinear problems with unknown boundary 
for the equation of thermal  conductivity. Case 1 was investigated in [6]; however, the solution obtained 
was incor rec t  because they used in place of (7) in the sys tem of boundary conditions the condition 

�9 (~, t) = o, 

which is only valid for the zone of quasir igid motion. It cannot be used as a boundary condition for  the 
viscous zone because the line (~, 1) lies entirely within the region for which Eq. (4) is not satisfied. 

A s imi lar  problem for medium veloci ty u(~, ~?) was reduced in sufficiently general  formulat ion to 
a nonlinear sys tem of integral  Vol ter ra  equations of the f i rs t  kind with an asymptot ic  solution of the prob-  
lem being obtained for small  t ime values in Case 1 [2]. 
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Fig. 1. Block d i ag ram  of p r o g r a m  for  r e a l i z a -  
tion of the Monte Car lo  method as  applied to p rob-  
l em 1. N o =2000. 

In this paper ,  the Monte Car lo  method is used 
to obtain solutions sui table  for  any ~ > 0. Applicat ion 
of the method of s ta t i s t i ca l  t r i a l s  (Monte Carlo) to 
the solution of boundary  value and mixed p rob lems  in 
ma thema t i ca l  physics  has been descr ibed  [7, 8]. 
Haj i-Sheikh and Sparrow [9] success fu l ly  applied 
this method to the solution of a p rob lem with unknown 
boundary for  the equation of t he rma l  conductivity 
- the Stefan f reez ing  problem.  In con t ras t  to the 
p rob lem discussed  in [9], the boundary conditions in 
the p rob lems  being d iscussed  (Cases 1-3) do not con-  
lain t ime  de r iva t ives  of functions desc r ib ing  the pos i -  
tion of the zone boundary,  which e l imina tes  the pos-  
s ibi l i ty  of using the method of solution developed in 
[9]. 

Before  rea l i za t ion  of the Monte Car lo  method,  
the mixed (or boundary value) p rob lem mus t  be con-  
ver ted  to f in i te -d i f fe rence  f o r m  and the coeff ic ients  
of the f in i te -d i f fe rence  equations mus t  be in te rpre ted  
as  probabi l i t ies  for  t rans i t ion  of the moving point 
f r o m  one point of the d i f ference  mesh  to another.  
We presen t  expres s ions  for  the t rans i t ion  probabi l i t ies  
in an impl ic i t  d i f ference  scheme  for  the equation of 
t he rma l  conductivity defined over  a four -po in t  pat -  

t e rn  (~i-1;  ~k), (~i; ~?k+l), (~i; ~?k), (it, Vk-1) in a 
nonuniform grid of ( and V: 

P(i, k-+i--l, k ) = [ 1  + ~ - -  ~-~ 
k (~k+l - -  ~1~) ~ 

"qh+l - -  TIk--J. I--I, 

J ~l~ - -  ~I~-~ 

P(i, k ~ i ,  k + l ) =  I (~1~+~--~1~) ~ 

+ ~]~+~-- ~l~-~ ]-~, (12) 
] 

[ 

@ ~]k+l-- ~]h-1 ] - ' ,  
J 

where ,  fo r  example ,  P(i, k - -  i - 1, k) is the probabi l i ty  for  the t rans i t ion  of the moving point f r o m  (}i, ~Tk) 

to (4 i - 1  ; ~Tk)- 

In f in i te -d i f fe rence  fo rm,  Eqs. (5)-(7) become  

�9 [~; 0] = ~ [ ~ ;  n l ] - - ~ ( ~ ) n l ,  (13) 
[~;  n0 (~)] = s, (14) 

s [no (~,) - no (~_,-~)] 
[~; no (~)] = 1: [~; ~0(~,-1)] 1 - ~0(~) ' (15) 

and Eqs. (10) and (11), 
l ive ly  wr i t t en  as  

n e c e s s a r y  for  solution of the p rob lem in the second and third cases ,  a r e  r e s p e c -  

t(0, '}h) = 1 - -  'lh, (16) 

(0, qk) = 1. (17) 
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Fig. 2. Time dependence 
of zone boundary location 
in the various problems: 
a) development of gradient 
flow; b) damping of gradi -  
ent flow; c) damping of 
symmet r i c  Couette flow. 

The probabil ist ic significance of Eqs. (13), (14), (16), and (17) is given in [9]. According to the Monte 
Carlo method, the value of the unknown function T(~i; ~?k) is equal to the mathemat ical  expectation value of 
the f ree  t e rms  in Eqs. (13) and (14), and (16) or  (17) respect ive ly  in the cases  of the second and third equa-  
tions, which a re  selected f rom a general  sample for the incidence of moving part icles on the boundary or 
beginning of the region. The central  limit theorem of probability theory [8] guarantees ,  under sufficiently 
broad assumptions,  the probabili ty convergence of the ar i thmet ic  mean of the values mentioned to the 
mathemat ical  expectation value in a finite number of t r ials .  

The a lgor i thm for solving the problem consis ts  of the following. We assume that cer ta in  values 
~0(~i) a re  known. One can then use as a t r ial  value of ~0(}i +1) 

no (~i+1) = no (~) + % (~) - -  ~o (~-1) (~i+1 - -  ~) (18) 

and build up the grid to the t ime ~i +1. Determining the corresponding t ransi t ion probabilit ies (12) and 
developing the random movement  of a finite number of par t ic les ,  we calculate ~'[~i +1; ~0(~i)]- Substituting 
the resu l t  in (15), wri t ten for  the t ime ~i +1, and using (14), we obtain a refined value for the quantity 
770(}i +0 .  If the difference between the assigned and calculated values of ~?0(}i +1) is small ,  we go to the 
next step; if it is not, the calculated value is used in a repeti t ion of the calculation. 

Equation (18) does not permit  definition of the value of the f i rs t  step. For  Case 1, this can be done 
with the help of an asymptot ic  solution [2]; for the second and third cases ,  it is convenient to take ~?0(}1) 

= ~0(0). 

A block d iagram for real izat ion of the Monte Carlo method as applied to the f i rs t  problem is shown 
in Fig. 1. The relat ionships ~70(~) for the f i rs t ,  second, and third problems a re  shown respect ively  in Fig. 
2a, 2b, and 2c for severa l  values of the plasticity parameter .  A feature of the solutions for the second and 
third problems is the finite flow time. Where damping of the flow of a Newtonian fluid under s imilar  con- 
ditions is of an asymptot ic  nature,  flow of a v iscoplas t ic  mater ia l  ceases  at the moment  the boundary of 
the quasir igid core  reaches  the channel wall. It is easy to see in Fig. 2a that in the f i rs t  problem, the 
position of the zone boundary ~0(~) tends to the t ime-independent value in accordance  with (9) for suffi-  
ciently large ~. Escape into the t ime-independent mode is more  acceptable for small  values of s and de-  
t e r io ra tes  as the plastici ty pa ramete r  increases  while maintaining a qualitatively co r rec t  nature. This 
phenomenon is in t r ins ica l ly  cha rac te r i s t i c  of the method of solution because it can be shown that the r e l a -  
tive e r r o r  in determinat ion of ~?0(~i +l) inc reases  as  s inc reases .  

In the application of the Monte Carlo method to the solution of boundary-value and mixed problems 
in mathemat ical  physics,  one must  keep in mind the approximation e r r o r s  associated with the introduction 
of a f ini te-difference scheme and the e r r o r s  associated with a finite sample. E r r o r s  of the f i r s t  kind can 
be reduced by using an absolutely stable difference scheme and varying the grid pa ramete r s ;  e r r o r s  of the 
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second kind a r e  reduced by inc reas ing  the number  of t r i a l s .  Both r equ i re  an i nc r ea se  in machine t ime for  
p rob lem solution. In this connection, it is app rop r i a t e  to point out that  the quali ty of the method is d e t e r -  
mined not only by the number  of a r i t hme t i ca l  opera t ions  requi red  for  i ts  r ea l i za t ion  but a l so  by the t ime  
an inves t iga tor  spends in p repar ing  for  solution of the p rob lem on a compute r  [10]. 
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N O T A T I O N  

shear  s t r e s s ;  
dynamic  v iscos i ty ;  
l imit  shea r  s t r e s s ;  
ve loc i ty  of fluid; 
t ime;  
t r a n s v e r s e  coordinate;  
d imens ion less  t r a n s v e r s e  coordinate;  
d imens ion less  t ime;  
unknown in ter face ;  
p r e s s u r e  gradient ;  
p las t ic i ty  p a r a m e t e r ;  
poss ibi l i ty  of t r a n s f e r  of flowing point f r o m  (~i, ~td to ( ( i - i ;  ~.k)" 
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